Crecimiento del Producto con Ecuacion Diferencial

Ejemplo Numérico: Crecimiento del Producto con Ecuación diferencial. (*) Suponga que un país tiene un crecimiento económico que es propo...


Ejemplo Numérico: Crecimiento del Producto con Ecuación diferencial. (*)
Suponga que un país tiene un crecimiento económico que es proporcional a su Producto Interno Bruto, decir que la tasa de crecimiento económico con el tiempo (dY/dt) es proporcional al producto (Y) respectivo en el tiempo (t). Si el factor de proporcionalidad fuera β Є(0;1), determine:
a) La ecuación diferencial.
b) Interprete el factor de proporcionalidad β.
c) Determinar la función de producto en el tiempo Yt.
d) Un estudiante de la Universidad Mayor San Andrés (UMSA) encontró por análisis econométrico de 67 años (1945-2011), que la tasa de crecimiento potencial de PIB de Bolivia es de 2,91% anual, y que en el año 1945 el PIB (PPA de 1990) fue de 4.314 millones dólares. Determinar el producto para el año 2020, suponiendo una función de producto exponencial.
e) Muestre en un grafico la función de producto.

SOLUCIÓN
a) La ecuación diferencial. 
El planteamiento proporcional con Y=Yt será dY/dt ∝ Y
En forma de igualdad con el factor de proporcionalidad
dY/dt=βY

b) Interprete el factor de proporcionalidad β. 
Despejando β la ecuación de la anterior ecuación tenemos:
β =(dY/Y)/dt=∆%Y/dt
Esta ecuación nos dice que β es un incremento porcentual en el producto (Y) por unidad de tiempo, es decir es la tasa de crecimiento por unidad de tiempo.

c) Determinar la función de producto en el tiempo Y=Yt.
Partiendo de la ecuación dY/dt=β Y, separando variables, tenemos:
dY/Y=β dt
Integrando miembro a miembro tenemos:
∫ dY/Y=β∫ dt 
La función de producción general donde K y C son constantes
lnY=βt+K
Despejando Y con e^K=C=Yo, donde Yt es el producto inicial en el tiempo cero (t=0).
Y=e^(βt+K)=Ce^(βt)=Yo e^(βt)
La misma ecuación se puede obtener con una integral definida, con Yo=0
∫dY/Y=β∫dt
finalmente la función de producción particular o trayectoria de tiempo de la producción será: Yt=Yo e^(βt)

d) Un estudiante de la Universidad Mayor San Andrés (UMSA) encontró por análisis econométrico de 67 años (1945-2011), que la tasa de crecimiento potencial de PIB de Bolivia es de 2,91% anual, y que en el año 1945 el PIB (PPA de 1990) fue de 4.314 millones dólares. Determinar el producto para el año 2020, suponiendo una función de producto exponencial.

Si β=0,0291, con Y(1945)=Y(0)=4.314 y el número de años t=(2020-1945)+1=76. Reemplazamos los datos en la ecuación Yt=Yo e^(βt) y tenemos el producto para el año 2020.
Y(76) 4.314 e^(0,0291t)=39.388,17
Entonces el PIB (PPA de 1990) potencial de Bolivia del año 2020 posiblemente sea de 39.388 millones de dólares.

e) Muestre en un gráfico la función de producto
La función de producción en el tiempo es:

Gráfico 1. Bolivia, Crecimiento del Producto , 2013

(*) Es un ejemplo numérico resumido del Capitulo 1: Desarrollo, Planificación y los Proyectos, del texto "Preparación y Evaluación de Proyectos" del autor. (aplicación de ecuaciones diferenciales en economía)

COMENTARIOS

GOOGLE
Nombre

Contabilidad,2,EconomiaPolitica,5,Estadisticas,1,EvaluacionProyectos,46,FinanzasCorporativas,8,GasPetroleo,6,GestionCalidad,2,GestionProduccion,16,GestionProyectos,13,IdentificacionProyectos,8,Imagenes,3,IngenieriaAmbiental,5,IngenieriaElectrica,4,IngenieriaIndustrial,10,IngenieriaLegal,5,IngenieriaMetodos,3,IngenieriaTransporte,5,Internet,6,InvestigacionOperaciones,3,Lean,10,Libros,6,Logistica,1,Logo,3,Macroeconomia,4,Matematicas,5,Microeconomia,9,Mineria,12,OPINION,17,OptimizacionDinamica,7,PaginaWeb,6,PlanNegocios,3,PreparacionProyectos,34,SeguridadIndustrial,4,Variedad,12,
ltr
item
Ruben Apaza: Crecimiento del Producto con Ecuacion Diferencial
Crecimiento del Producto con Ecuacion Diferencial
https://2.bp.blogspot.com/-SaD7PWwIsNE/Uc37xmkJl4I/AAAAAAAABBU/Khy6e1G4f-c/s640/crecimiento+ecuacion+diferencial.PNG
https://2.bp.blogspot.com/-SaD7PWwIsNE/Uc37xmkJl4I/AAAAAAAABBU/Khy6e1G4f-c/s72-c/crecimiento+ecuacion+diferencial.PNG
Ruben Apaza
https://www.rubenapaza.com/2013/06/crecimiento-producto-ecuacion.html
https://www.rubenapaza.com/
https://www.rubenapaza.com/
https://www.rubenapaza.com/2013/06/crecimiento-producto-ecuacion.html
true
6705892616169174074
UTF-8
Cargando todo No se encontró VER TODO Leer mas Responder Cancelar Borrar Por Portada PAGINAS ARTÍCULOS Ver todo RELACIONADOS ETIQUETA ARCHIVO BUSCAR TODO LOS ARTÍCULOS No encontró ninguna publicación relacionado Volver a Portada Domingo Lunes Martes Miercoles Jueves Viernes Sábado Dom Lun Mar Mie Jue Vie Sab Enero Febrero Marzo Abril Mayo Junio Julio Agosto Septiembre Octubre Noviembre Diciembre Ene Feb Mar Abr Mayo Jun Jul Ago Sep Oct Nov Dic ahora hace 1 minuto hace $$1$$ minutos hace 1 hora hace $$1$$ hora Ayer hace $$1$$ dias hace $$1$$ semanas hace 5 semanas Seguidores Seguir DESCARGA PREMIUM BLOQUEADO PASO 1: Compartir. PASO 2: Click en el enlace que ha compartido para desbloquear. Copiar todo Seleccionar todo Copiado en portapapeles. No se pueden copiar, presione [CTRL] + [C] (o CMD + C en Mac) para copiar